
Relationship to exponential function and complex 
numbers 

 
 

Euler's formula illustrated with the three dimensional helix, starting with the 
2-D orthogonal components of the unit circle, sine and cosine (using θ = t ). 
It can be shown from the series definitions[14] that the sine and cosine 
functions are the imaginary and real parts, respectively, of the complex 
exponential function when its argument is purely imaginary: 
 
This identity is called Euler's formula. In this way, trigonometric 
functions become essential in the geometric interpretation of complex 
analysis. For example, with the above identity, if one considers the unit 
circle in the complex plane, parametrized by e ix, and as above, we can 
parametrize this circle in terms of cosines and sines, the relationship 
between the complex exponential and the trigonometric functions 
becomes more apparent. 
Euler's formula can also be used to derive some trigonometric 
identities, by writing sine and cosine as: 
 
 
Furthermore, this allows for the definition of the trigonometric 
functions for complex arguments z: 
 
 
where i 2 = −1. The sine and cosine defined by this are entire functions. 
Also, for purely real x, 
 
 
It is also sometimes useful to express the complex sine and cosine 
functions in terms of the real and imaginary parts of their arguments. 
 
 
This exhibits a deep relationship between the complex sine and cosine 
functions and their real (sin, cos) and hyperbolic real (sinh, cosh) 
counterparts. 



Complex graphs 
In the following graphs, the domain is the complex plane pictured, and 
the range values are indicated at each point by color. Brightness 
indicates the size (absolute value) of the range value, with black being 
zero. Hue varies with argument, or angle, measured from the positive 
real axis. (more) 

Trigonometric functions in the complex plane 
      
      

Definitions via differential equations 
Both the sine and cosine functions satisfy the differential equation: 
 
That is to say, each is the additive inverse of its own second derivative. 
Within the 2-dimensional function space V consisting of all solutions of 
this equation, 
▪ the sine function is the unique solution satisfying the initial condition  

and 
▪ the cosine function is the unique solution satisfying the initial 

condition . 
Since the sine and cosine functions are linearly independent, together 
they form a basis of V. This method of defining the sine and cosine 
functions is essentially equivalent to using Euler's formula. (See linear 
differential equation.) It turns out that this differential equation can be 
used not only to define the sine and cosine functions but also to prove 
the trigonometric identities for the sine and cosine functions. 
Further, the observation that sine and cosine satisfies yʹʹ = −y means 
that they are eigenfunctions of the second-derivative operator. 
The tangent function is the unique solution of the nonlinear differential 
equation 
 
satisfying the initial condition y(0) = 0. There is a very interesting 
visual proof that the tangent function satisfies this differential 
equation.[15] 
The significance of radians 
Radians specify an angle by measuring the length around the path of 
the unit circle and constitute a special argument to the sine and cosine 



functions. In particular, only sines and cosines that map radians to 
ratios satisfy the differential equations that classically describe them. If 
an argument to sine or cosine in radians is scaled by frequency, 
 
then the derivatives will scale by amplitude. 
 
Here, k is a constant that represents a mapping between units. If x is in 
degrees, then 
 
This means that the second derivative of a sine in degrees does not 
satisfy the differential equation 
 
but rather 
 
The cosine's second derivative behaves similarly. 
This means that these sines and cosines are different functions, and that 
the fourth derivative of sine will be sine again only if the argument is in 
radians. 
Identities 
Main article: List of trigonometric identities 
Many identities interrelate the trigonometric functions. Among the 
most frequently used is the Pythagorean identity, which states that for 
any angle, the square of the sine plus the square of the cosine is 1. This 
is easy to see by studying a right triangle of hypotenuse 1 and applying 
the Pythagorean theorem. In symbolic form, the Pythagorean identity is 
written 
 
where  is standard notation for  
Other key relationships are the sum and difference formulas, which 
give the sine and cosine of the sum and difference of two angles in 
terms of sines and cosines of the angles themselves. These can be 
derived geometrically, using arguments that date to Ptolemy. One can 
also produce them algebraically using Euler's formula. 
Sum 
 
 



Subtraction 
 
 
These in turn lead to the following three-angle formulae: 
 
 
When the two angles are equal, the sum formulas reduce to simpler 
equations known as the double-angle formulae. 
 
 
When three angles are equal, the three-angle formulae simplify to 
 
 
These identities can also be used to derive the product-to-sum identities 
that were used in antiquity to transform the product of two numbers 
into a sum of numbers and greatly speed operations, much like the 
logarithm function. 
Calculus 
For integrals and derivatives of trigonometric functions, see the 
relevant sections of Differentiation of trigonometric functions, Lists of 
integrals and List of integrals of trigonometric functions. Below is the 
list of the derivatives and integrals of the six basic trigonometric 
functions. The number C is a constant of integration. 
   
   
   
   
   
   
   
Definitions using functional equations 
In mathematical analysis, one can define the trigonometric functions 
using functional equations based on properties like the difference 
formula. Taking as given these formulas, one can prove that only two 
real functions satisfy those conditions. Symbolically, we say that there 
exists exactly one pair of real functions —  and  — such that for all real 



numbers  and , the following equation hold:[16] 
 
with the added condition that 
 
Other derivations, starting from other functional equations, are also 
possible, and such derivations can be extended to the complex 
numbers. As an example, this derivation can be used to define 
trigonometry in Galois fields. 
Computation 
The computation of trigonometric functions is a complicated subject, 
which can today be avoided by most people because of the widespread 
availability of computers and scientific calculators that provide built-in 
trigonometric functions for any angle. This section, however, describes 
details of their computation in three important contexts: the historical 
use of trigonometric tables, the modern techniques used by computers, 
and a few "important" angles where simple exact values are easily 
found. 
The first step in computing any trigonometric function is range 
reduction—reducing the given angle to a "reduced angle" inside a small 
range of angles, say 0 to π/2, using the periodicity and symmetries of 
the trigonometric functions. 
Main article: Generating trigonometric tables 
Prior to computers, people typically evaluated trigonometric functions 
by interpolating from a detailed table of their values, calculated to 
many significant figures. Such tables have been available for as long as 
trigonometric functions have been described (see History below), and 
were typically generated by repeated application of the half-angle and 
angle-addition identities starting from a known value (such as 
sin(π/2) = 1). 
Modern computers use a variety of techniques.[17] One common method, 
especially on higher-end processors with floating point units, is to 
combine a polynomial or rational approximation (such as Chebyshev 
approximation, best uniform approximation, and Padé approximation, 
and typically for higher or variable precisions, Taylor and Laurent 
series) with range reduction and a table lookup—they first look up the 
closest angle in a small table, and then use the polynomial to compute 



the correction.[18] Devices that lack hardware multipliers often use an 
algorithm called CORDIC (as well as related techniques), which uses 
only addition, subtraction, bitshift, and table lookup. These methods are 
commonly implemented in hardware floating-point units for 
performance reasons. 
For very high precision calculations, when series expansion 
convergence becomes too slow, trigonometric functions can be 
approximated by the arithmetic-geometric mean, which itself 
approximates the trigonometric function by the (complex) elliptic 
integral.[19] 
Main article: Exact trigonometric constants 
Finally, for some simple angles, the values can be easily computed by 
hand using the Pythagorean theorem, as in the following examples. For 
example, the sine, cosine and tangent of any integer multiple of  radians 
(3°) can be found exactly by hand. 
Consider a right triangle where the two other angles are equal, and 
therefore are both  radians (45°). Then the length of side b and the 
length of side a are equal; we can choose . The values of sine, cosine 
and tangent of an angle of  radians (45°) can then be found using the 
Pythagorean theorem: 
 
Therefore: 
 
 

 
 

Computing trigonometric functions from an equilateral triangle 
To determine the trigonometric functions for angles of π/3 radians (60 
degrees) and π/6 radians (30 degrees), we start with an equilateral 
triangle of side length 1. All its angles are π/3 radians (60 degrees). By 
dividing it into two, we obtain a right triangle with π/6 radians (30 
degrees) and π/3 radians (60 degrees) angles. For this triangle, the 
shortest side = 1/2, the next largest side =(√3)/2 and the hypotenuse = 
1. This yields: 
 
 
 



Special values in trigonometric functions 
There are some commonly used special values in trigonometric 
functions, as shown in the following table. 
Function         

sin         
cos         
tan        [20] 
cot [20]        
sec        [20] 
csc [20]        

The symbol  here represents the point at infinity on the real projective 
line, the limit on the extended real line is  on one side and  on the other. 
Inverse functions 
Main article: Inverse trigonometric functions 
The trigonometric functions are periodic, and hence not injective, so 
strictly they do not have an inverse function. Therefore, to define an 
inverse function we must restrict their domains so that the 
trigonometric function is bijective. In the following, the functions on 
the left are defined by the equation on the right; these are not proved 
identities. The principal inverses are usually defined as: 
Function Definition Value Field 
   
   
   
   
   
   
The notations sin−1 and cos−1 are often used for arcsin and arccos, etc. 
When this notation is used, the inverse functions could be confused 
with the multiplicative inverses of the functions. The notation using the 
"arc-" prefix avoids such confusion, though "arcsec" can be confused 
with "arcsecond". 
Just like the sine and cosine, the inverse trigonometric functions can 
also be defined in terms of infinite series. For example, 
 



These functions may also be defined by proving that they are 
antiderivatives of other functions. The arcsine, for example, can be 
written as the following integral: 
 
Analogous formulas for the other functions can be found at Inverse 
trigonometric functions. Using the complex logarithm, one can 
generalize all these functions to complex arguments: 
 
 
 
Connection to the inner product 
In an inner product space, the angle between two non-zero vectors is 
defined to be 
 
Properties and applications 
Main article: Uses of trigonometry 
The trigonometric functions, as the name suggests, are of crucial 
importance in trigonometry, mainly because of the following two 
results. 
Law of sines 
The law of sines states that for an arbitrary triangle with sides a, b, and 
c and angles opposite those sides A, B and C: 
 
where  is the area of the triangle, or, equivalently, 
 
where R is the triangle's circumradius. 

 
 

A Lissajous curve, a figure formed with a trigonometry-based function. 
It can be proven by dividing the triangle into two right ones and using 
the above definition of sine. The law of sines is useful for computing 
the lengths of the unknown sides in a triangle if two angles and one 
side are known. This is a common situation occurring in triangulation, 
a technique to determine unknown distances by measuring two angles 
and an accessible enclosed distance. 
Law of cosines 



The law of cosines (also known as the cosine formula or cosine rule) is 
an extension of the Pythagorean theorem: 
 
or equivalently, 
 
In this formula the angle at C is opposite to the side c. This theorem can 
be proven by dividing the triangle into two right ones and using the 
Pythagorean theorem. 
The law of cosines can be used to determine a side of a triangle if two 
sides and the angle between them are known. It can also be used to find 
the cosines of an angle (and consequently the angles themselves) if the 
lengths of all the sides are known. 
Law of tangents 
Main article: Law of tangents 
The following all form the law of tangents[21] 
 
The explanation of the formulae in words would be cumbersome, but 
the patterns of sums and differences; for the lengths and corresponding 
opposite angles, are apparent in the theorem. 
Law of cotangents 
Main article: Law of cotangents 
If 
 
(the radius of the inscribed circle for the triangle) and 
 
(the semi-perimeter for the triangle), then the following all form the 
law of cotangents[22] 
 
 
 
It follows that 
 
In words the theorem is: the cotangent of a half-angle equals the ratio 
of the semi-perimeter minus the opposite side to the said angle, to the 
inradius for the triangle. 
Periodic functions 



 
 

An animation of the additive synthesis of a square wave with an increasing 
number of harmonics 

 
 

Sinusoidal basis functions (bottom) can form a sawtooth wave (top) when 
added. All the basis functions have nodes at the nodes of the sawtooth, and 
all but the fundamental (k = 1) have additional nodes. The oscillation seen 

about the sawtooth when k is large is called the Gibbs phenomenon 
The trigonometric functions are also important in physics. The sine and 
the cosine functions, for example, are used to describe simple harmonic 
motion, which models many natural phenomena, such as the movement 
of a mass attached to a spring and, for small angles, the pendular 
motion of a mass hanging by a string. The sine and cosine functions are 
one-dimensional projections of uniform circular motion. 
Trigonometric functions also prove to be useful in the study of general 
periodic functions. The characteristic wave patterns of periodic 
functions are useful for modeling recurring phenomena such as sound 
or light waves.[23] 
Under rather general conditions, a periodic function ƒ(x) can be 
expressed as a sum of sine waves or cosine waves in a Fourier series.[24] 
Denoting the sine or cosine basis functions by φk, the expansion of the 
periodic function ƒ(t) takes the form: 
 
For example, the square wave can be written as the Fourier series 
 
In the animation of a square wave at top right it can be seen that just a 
few terms already produce a fairly good approximation. The 
superposition of several terms in the expansion of a sawtooth wave are 
shown underneath. 
History 
Main article: History of trigonometric functions 
While the early study of trigonometry can be traced to antiquity, the 
trigonometric functions as they are in use today were developed in the 
medieval period. The chord function was discovered by Hipparchus of 
Nicaea (180–125 BC) and Ptolemy of Roman Egypt (90–165 AD). 



The functions sine and cosine can be traced to the jyā and koti-jyā 
functions used in Gupta period Indian astronomy (Aryabhatiya, Surya 
Siddhanta), via translation from Sanskrit to Arabic and then from 
Arabic to Latin.[25] 
All six trigonometric functions in current use were known in Islamic 
mathematics by the 9th century, as was the law of sines, used in solving 
triangles.[26] al-Khwārizmī produced tables of sines, cosines and 
tangents. They were studied by authors including Omar Khayyám, 
Bhāskara II, Nasir al-Din al-Tusi, Jamshīd al-Kāshī (14th century), 
Ulugh Beg (14th century), Regiomontanus (1464), Rheticus, and 
Rheticus' student Valentinus Otho.[citation needed] 
Madhava of Sangamagrama (c. 1400) made early strides in the analysis 
of trigonometric functions in terms of infinite series.[27] 
The first published use of the abbreviations 'sin', 'cos', and 'tan' is by the 
16th century French mathematician Albert Girard. 
In a paper published in 1682, Leibniz proved that sin x is not an 
algebraic function of x.[28] 
Leonhard Euler's Introductio in analysin infinitorum (1748) was mostly 
responsible for establishing the analytic treatment of trigonometric 
functions in Europe, also defining them as infinite series and presenting 
"Euler's formula", as well as the near-modern abbreviations sin., cos., 
tang., cot., sec., and cosec.[6] 
A few functions were common historically, but are now seldom used, 
such as the chord (crd(θ) = 2 sin(θ/2)), the versine (versin(θ) = 
1 − cos(θ) = 2 sin2(θ/2)) (which appeared in the earliest tables[6]), the 
haversine (haversin(θ) = versin(θ) / 2 = sin2(θ/2)), the exsecant 
(exsec(θ) = sec(θ) − 1) and the excosecant (excsc(θ) = exsec(π/2 − θ) = 
csc(θ) − 1). Many more relations between these functions are listed in 
the article about trigonometric identities. 
Etymologically, the word sine derives from the Sanskrit word for half 
the chord, jya-ardha, abbreviated to jiva. This was transliterated in 
Arabic as jiba, written jb, vowels not being written in Arabic. Next, this 
transliteration was mis-translated in the 12th century into Latin as 
sinus, under the mistaken impression that jb stood for the word jaib, 
which means "bosom" or "bay" or "fold" in Arabic, as does sinus in 
Latin.[29] Finally, English usage converted the Latin word sinus to 
sine.[30] The word tangent comes from Latin tangens meaning 



"touching", since the line touches the circle of unit radius, whereas 
secant stems from Latin secans — "cutting" — since the line cuts the 
circle. 
See also 
▪ All Students Take Calculus — a mnemonic for recalling the signs of 

trigonometric functions in a particular quadrant of a Cartesian 
plane 

▪ Aryabhata's sine table 
▪ Bhaskara I's sine approximation formula 
▪ Euler's formula 
▪ Gauss's continued fraction — a continued fraction definition for the 

tangent function 
▪ Generalized trigonometry 
▪ Generating trigonometric tables 
▪ Hyperbolic function 
▪ List of periodic functions 
▪ List of trigonometric identities 
▪ Madhava series 
▪ Madhava's sine table 
▪ Polar sine — a generalization to vertex angles 
▪ Proofs of trigonometric identities 
▪ Table of Newtonian series 
▪ Unit vector (explains direction cosines) 
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