
Quadrants and octants 
Main articles: Octant (solid geometry) and Quadrant (plane geometry) 

 
 

The four quadrants of a Cartesian coordinate system. 
The axes of a two-dimensional Cartesian system divide the plane into 
four infinite regions, called quadrants, each bounded by two half-axes. 
These are often numbered from 1st to 4th and denoted by Roman 
numerals: I (where the signs of the two coordinates are +,+), II (−,+), 
III (−,−), and IV (+,−). When the axes are drawn according to the 
mathematical custom, the numbering goes counter-clockwise starting 
from the upper right ("north-east") quadrant. 
Similarly, a three-dimensional Cartesian system defines a division of 
space into eight regions or octants, according to the signs of the 
coordinates of the points. The convention used for naming a specific 
octant is to list its signs, e.g. (+ + +) or (− + −). The generalization of 
the quadrant and octant to an arbitrary number of dimensions is the 
orthant, and a similar naming system applies. 
Cartesian formulae for the plane 
Distance between two points 
The Euclidean distance between two points of the plane with Cartesian 
coordinates  and  is 
 
This is the Cartesian version of Pythagoras's theorem. In three-
dimensional space, the distance between points  and  is 
 
which can be obtained by two consecutive applications of Pythagoras' 
theorem. 
Euclidean transformations 
The Euclidean transformations or Euclidean motions are the (bijective) 
mappings of points of the Euclidean plane to themselves which 
preserve distances between points. There are four types of these 
mappings (also called isometries): translations, rotations, reflections 
and glide reflections.[5] 
Translation 



Translating a set of points of the plane, preserving the distances and 
directions between them, is equivalent to adding a fixed pair of 
numbers (a, b) to the Cartesian coordinates of every point in the set. 
That is, if the original coordinates of a point are (x, y), after the 
translation they will be 
 
Rotation 
To rotate a figure counterclockwise around the origin by some angle  is 
equivalent to replacing every point with coordinates (x,y) by the point 
with coordinates (x',y'), where 
 
 
Thus:  
Reflection 
If (x, y) are the Cartesian coordinates of a point, then (−x, y) are the 
coordinates of its reflection across the second coordinate axis (the Y-
axis), as if that line were a mirror. Likewise, (x, −y) are the coordinates 
of its reflection across the first coordinate axis (the X-axis). In more 
generality, reflection across a line through the origin making an angle  
with the x-axis, is equivalent to replacing every point with coordinates 
(x, y) by the point with coordinates (xʹ,yʹ), where 
 
 
Thus:  
Glide reflection 
A glide reflection is the composition of a reflection across a line 
followed by a translation in the direction of that line. It can be seen that 
the order of these operations does not matter (the translation can come 
first, followed by the reflection). 
General matrix form of the transformations 
These Euclidean transformations of the plane can all be described in a 
uniform way by using matrices. The result  of applying a Euclidean 
transformation to a point  is given by the formula 
 
where A is a 2×2 orthogonal matrix and b = (b1, b2) is an arbitrary 
ordered pair of numbers;[6] that is, 



 
 
where 
 [Note the use of row vectors for point coordinates and that the matrix 
is written on the right.] 
To be orthogonal, the matrix A must have orthogonal rows with same 
Euclidean length of one, that is, 
 
and 
 
This is equivalent to saying that A times its transpose must be the 
identity matrix. If these conditions do not hold, the formula describes a 
more general affine transformation of the plane provided that the 
determinant of A is not zero. 
The formula defines a translation if and only if A is the identity matrix. 
The transformation is a rotation around some point if and only if A is a 
rotation matrix, meaning that 
 
A reflection or glide reflection is obtained when, 
 
Assuming that translation is not used transformations can be combined 
by simply multiplying the associated transformation matrices. 
Affine transformation 
Another way to represent coordinate transformations in Cartesian 
coordinates is through affine transformations. In affine transformations 
an extra dimension is added and all points are given a value of 1 for this 
extra dimension. The advantage of doing this is that point translations 
can be specified in the final column of matrix A. In this way, all of the 
euclidean transformations become transactable as matrix point 
multiplications. The affine transformation is given by: 
 [Note the matrix A from above was transposed. The matrix is on the 
left and column vectors for point coordinates are used.] 
Using affine transformations multiple different euclidean 
transformations including translation can be combined by simply 
multiplying the corresponding matrices. 
Scaling 
An example of an affine transformation which is not a Euclidean 



motion is given by scaling. To make a figure larger or smaller is 
equivalent to multiplying the Cartesian coordinates of every point by 
the same positive number m. If (x, y) are the coordinates of a point on 
the original figure, the corresponding point on the scaled figure has 
coordinates 
 
If m is greater than 1, the figure becomes larger; if m is between 0 and 
1, it becomes smaller. 
Shearing 
A shearing transformation will push the top of a square sideways to 
form a parallelogram. Horizontal shearing is defined by: 
 
Shearing can also be applied vertically: 
 
Orientation and handedness 
Main article: Orientation (mathematics) 
See also: right-hand rule and Axes conventions 
In two dimensions 

 
 

The right hand rule. 
Fixing or choosing the x-axis determines the y-axis up to direction. 
Namely, the y-axis is necessarily the perpendicular to the x-axis 
through the point marked 0 on the x-axis. But there is a choice of which 
of the two half lines on the perpendicular to designate as positive and 
which as negative. Each of these two choices determines a different 
orientation (also called handedness) of the Cartesian plane. 
The usual way of orienting the axes, with the positive x-axis pointing 
right and the positive y-axis pointing up (and the x-axis being the "first" 
and the y-axis the "second" axis) is considered the positive or standard 
orientation, also called the right-handed orientation. 
A commonly used mnemonic for defining the positive orientation is the 
right hand rule. Placing a somewhat closed right hand on the plane 
with the thumb pointing up, the fingers point from the x-axis to the y-
axis, in a positively oriented coordinate system. 
The other way of orienting the axes is following the left hand rule, 



placing the left hand on the plane with the thumb pointing up. 
 
 

3D Cartesian Coordinate Handedness 
When pointing the thumb away from the origin along an axis towards 
positive, the curvature of the fingers indicates a positive rotation along 
that axis. 
Regardless of the rule used to orient the axes, rotating the coordinate 
system will preserve the orientation. Switching any two axes will 
reverse the orientation, but switching both will leave the orientation 
unchanged. 
In three dimensions 

 
 

Fig. 7 – The left-handed orientation is shown on the left, and the right-
handed on the right. 

 
 

Fig. 8 – The right-handed Cartesian coordinate system indicating the 
coordinate planes. 

Once the x- and y-axes are specified, they determine the line along 
which the z-axis should lie, but there are two possible directions on this 
line. The two possible coordinate systems which result are called 'right-
handed' and 'left-handed'. The standard orientation, where the xy-plane 
is horizontal and the z-axis points up (and the x- and the y-axis form a 
positively oriented two-dimensional coordinate system in the xy-plane 
if observed from above the xy-plane) is called right-handed or positive. 
The name derives from the right-hand rule. If the index finger of the 
right hand is pointed forward, the middle finger bent inward at a right 
angle to it, and the thumb placed at a right angle to both, the three 
fingers indicate the relative directions of the x-, y-, and z-axes in a 
right-handed system. The thumb indicates the x-axis, the index finger 
the y-axis and the middle finger the z-axis. Conversely, if the same is 
done with the left hand, a left-handed system results. 
Figure 7 depicts a left and a right-handed coordinate system. Because a 
three-dimensional object is represented on the two-dimensional screen, 
distortion and ambiguity result. The axis pointing downward (and to 



the right) is also meant to point towards the observer, whereas the 
"middle" axis is meant to point away from the observer. The red circle 
is parallel to the horizontal xy-plane and indicates rotation from the x-
axis to the y-axis (in both cases). Hence the red arrow passes in front of 
the z-axis. 
Figure 8 is another attempt at depicting a right-handed coordinate 
system. Again, there is an ambiguity caused by projecting the three-
dimensional coordinate system into the plane. Many observers see 
Figure 8 as "flipping in and out" between a convex cube and a concave 
"corner". This corresponds to the two possible orientations of the 
coordinate system. Seeing the figure as convex gives a left-handed 
coordinate system. Thus the "correct" way to view Figure 8 is to 
imagine the x-axis as pointing towards the observer and thus seeing a 
concave corner. 
 
Representing a vector in the standard basis 
A point in space in a Cartesian coordinate system may also be 
represented by a position vector, which can be thought of as an arrow 
pointing from the origin of the coordinate system to the point.[7] If the 
coordinates represent spatial positions (displacements), it is common to 
represent the vector from the origin to the point of interest as . In two 
dimensions, the vector from the origin to the point with Cartesian 
coordinates (x, y) can be written as: 
 
where , and  are unit vectors in the direction of the x-axis and y-axis 
respectively, generally referred to as the standard basis (in some 
application areas these may also be referred to as versors). Similarly, in 
three dimensions, the vector from the origin to the point with Cartesian 
coordinates  can be written as:[8] 
 
where  is the unit vector in the direction of the z-axis. 
There is no natural interpretation of multiplying vectors to obtain 
another vector that works in all dimensions, however there is a way to 
use complex numbers to provide such a multiplication. In a two 
dimensional cartesian plane, identify the point with coordinates (x, y) 
with the complex number z = x + iy. Here, i is the imaginary unit and is 



identified with the point with coordinates (0, 1), so it is not the unit 
vector in the direction of the x-axis. Since the complex numbers can be 
multiplied giving another complex number, this identification provides 
a means to "multiply" vectors. In a three dimensional cartesian space a 
similar identification can be made with a subset of the quaternions. 
Applications 
Cartesian coordinates are an abstraction that have a multitude of 
possible applications in the real world. However, three constructive 
steps are involved in superimposing coordinates on a problem 
application. 1) Units of distance must be decided defining the spatial 
size represented by the numbers used as coordinates. 2) An origin must 
be assigned to a specific spatial location or landmark, and 3) the 
orientation of the axes must be defined using available directional cues 
for (n-1) of the n axes. 
Consider as an example superimposing 3D Cartesian coordinates over 
all points on the Earth (i.e. geospatial 3D). What units make sense? 
Kilometers are a good choice, since the original definition of the 
kilometer was geospatial...10,000 km equalling the surface distance 
from the Equator to the North Pole. Where to place the origin? Based 
on symmetry, the gravitational center of the Earth suggests a natural 
landmark (which can be sensed via satellite orbits). Finally, how to 
orient X, Y and Z axis directions? The axis of Earth's spin provides a 
natural direction strongly associated with "up vs. down", so positive Z 
can adopt the direction from geocenter to North Pole. A location on the 
Equator is needed to define the X-axis, and the Prime Meridian stands 
out as a reference direction, so the X-axis takes the direction from 
geocenter out to [ 0 degrees longitude, 0 degrees latitude ]. Note that 
with 3 dimensions, and two perpendicular axes directions pinned down 
for X and Z, the Y-axis is determined by the first two choices. In order 
to obey the right hand rule, the Y-axis must point out from the 
geocenter to [ 90 degrees longitude, 0 degrees latitude ]. So what are 
the geocentric coordinates of the Empire State Building in New York 
City? Using [ longitude = −73.985656, latitude = 40.748433 ], Earth 
radius = 40,000/2π, and transforming from spherical --> Cartesian 
coordinates, you can estimate the geocentric coordinates of the Empire 
State Building, [ x, y, z ] = [ 1330.53 km, –4635.75 km, 4155.46 km ]. 



GPS navigation relies on such geocentric coordinates. 
In engineering projects, agreement on the definition of coordinates is a 
crucial foundation. One cannot assume that coordinates come 
predefined for a novel application, so knowledge of how to erect a 
coordinate system where there is none is essential to applying René 
Descartes' ingenious thinking. 
While spatial apps employ identical units along all axes, in business 
and scientific apps, each axis may have different units of measurement 
associated with it (such as kilograms, seconds, pounds, etc.). Although 
four- and higher-dimensional spaces are difficult to visualize, the 
algebra of Cartesian coordinates can be extended relatively easily to 
four or more variables, so that certain calculations involving many 
variables can be done. (This sort of algebraic extension is what is used 
to define the geometry of higher-dimensional spaces.) Conversely, it is 
often helpful to use the geometry of Cartesian coordinates in two or 
three dimensions to visualize algebraic relationships between two or 
three of many non-spatial variables. 
The graph of a function or relation is the set of all points satisfying that 
function or relation. For a function of one variable, f, the set of all 
points (x, y), where y = f(x) is the graph of the function f. For a function 
g of two variables, the set of all points (x, y, z), where z = g(x, y) is the 
graph of the function g. A sketch of the graph of such a function or 
relation would consist of all the salient parts of the function or relation 
which would include its relative extrema, its concavity and points of 
inflection, any points of discontinuity and its end behavior. All of these 
terms are more fully defined in calculus. Such graphs are useful in 
calculus to understand the nature and behavior of a function or relation. 
See also 
▪ Horizontal and vertical 
▪ Jones diagram, which plots four variables rather than two. 
▪ Orthogonal coordinates 
▪ Polar coordinate system 
▪ Spherical coordinate system 
Notes 
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